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FORMATION OF A GAS HYDRATE DUE TO INJECTION

OF A COLD GAS INTO A POROUS RESERVOIR

PARTLY SATURATED BY WATER

UDC 532.546:536.421V. Sh. Shagapov,1 M. K. Khasanov,2

and N. G. Musakaev3

Specific features of formation of gas hydrates due to injection of a gas into a porous medium initially
filled by a gas and water are considered. Self-similar solutions of an axisymmetric problem, which
describe the distributions of the basic parameters in the reservoir, are constructed. The existence of
solutions is demonstrated, which predict gas hydrate formation both on the frontal surface and in the
volume zone.
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Introduction. The possibility of gas storage in a hydrate state offers good prospects in industry. Some
researchers propose underground gas-hydrate conservation of greenhouse gases, which ensures highly safe storage
and does not incur high energy expenses. Other conditions being identical, the gas concentration per unit volume
in the hydrate state is much higher than that in the free state [1, 2].

The papers [3–5] that describe the results of mathematical modeling of gas-hydrate decomposition under
thermal and depression actions on a porous medium saturated by the gas hydrate and the gas demonstrated the
existence of solutions predicting that hydrate decomposition may occur both on the phase-transition surface and in
the volume zone.

The specific features of hydrate formation due to gas injection into a porous reservoir initially filled by the
gas and water are considered in the present paper in an axisymmetric approximation.

1. Governing Equations. Let the temperatures of the porous medium and the saturating substance
(gas, hydrate, or water) be identical. The hydrate is a two-species system with a mass concentration of the gas G.
The skeleton of the porous medium, the gas hydrate, and water are incompressible and motionless, the porosity is
constant, and the gas is calorically perfect:

ρsk, ρh, ρl, m = const, p = ρgRgT.

Here ρj (j = sk, h, l, g) are the true densities of the phases, m is the porosity, p is the pressure, T is the temperature,
and Rg is the gas constant; the subscripts g, l, h, and sk refer to the parameters of the gas, water, hydrate, and
skeleton of the porous medium, respectively.

With allowance for the assumptions made, the equations of conservation of mass for the gas and water in
the axisymmetric approximation can be written as

∂

∂t
(mSgρg) +

1
r

∂

∂r
(rSgmvgρg) = −mGρh

∂Sh

∂t
; (1.1)

∂

∂t
(mSlρl) = −m(1 − G)ρh

∂Sh

∂t
; (1.2)
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Sg + Sl + Sh = 1, (1.3)

where Sj (j = g, l, h) is the saturation of pores of the jth phase and vg is the velocity of the gas phase.
The liquid and gas filtration rates obey the equality mSlvl/(mSgvg) = μgkl/(μlkg) [ki (i = l, g) are the

phase permeability coefficients]. As the dynamic viscosity of the gas μg is much lower than the liquid viscosity μl,
this ratio is usually small (except for the cases where the saturation by water is close to unity). In most cases,
therefore, for instance, for the initial saturation of the pores by water S � 0.5 (this is the case considered in the
present paper), the assumption on a motionless liquid (vl = 0) is justified.

The gas filtration process obeys the Darcy law

mSgvg = − kg

μg

∂p

∂r
. (1.4)

Neglecting the barothermal effect, we write the equation for the heat inflow in the form

ρc
∂T

∂t
+ ρgcgmSgvg

∂T

∂r
=

1
r

∂

∂r

(
rλ

∂T

∂x

)
+ mρhLh

∂Sh

∂t
; (1.5)

ρc = (1 − m)ρskcsk + m
∑

j=g,l,h

Sjρjcj, λ = (1 − m)λsk + m
∑

j=g,l,h

Sjλj .

Here Lh is the specific heat of hydrate formation, ρc and λ are the specific volume heat and thermal conductivity of
the system, and cj and λj are the specific heats and thermal conductivities of the phases, respectively. We assume
that the values ρc and λ are constant throughout the reservoir, because the main contribution to these quantities
is made by the parameters of the porous medium skeleton.

The dependence of the permeability coefficient of the gas kg on the saturation by the gas can be defined by
the Kozeny formula

kg = k∗(mSg)3/(1 − mSg)2 ≈ k0S
3
g (k0 = k∗m3).

The temperature and pressure in the zone of hydrate formation are related by the condition of phase equi-
librium [2]

T = T0 + T∗ ln (p/ps0), (1.6)

where T0 and ps0 are the initial temperature of the system and the corresponding equilibrium pressure, and T∗ is
an empirical parameter depending on the type of the gas hydrate.

In the general case, three typical zones can arise in the porous reservoir in the course of hydrate formation.
In the zone near the well (near zone), the pores are filled by the gas and hydrate. Gas hydrate formation occurs in
the intermediate zone; hence, the pores there are filled by the gas, water, and hydrate. In the zone at a significant
distance from the well (far zone), the pores are filled by the gas and water. The conditions of conservation of mass
and heat have to be satisfied on the boundaries of these zones:[

m(Shρh(1 − G) + Slρl)ṙ(i)

]
= 0,

[
m(ρgSg(vg − ṙ(i)) − ρhShGṙ(i))

]
= 0,

[
λ

∂T

∂r

]
=

[
mρhLhShṙ(i)

]
.

(1.7)

Here [f ] is the jump of the quantity f on the boundary r(i) (i = s, m) between the zones, ṙ(i) is the velocity of
motion of this boundary, r(s) is the boundary between the near and intermediate zones, and r(m) is the boundary
between the intermediate and far zones. The temperature and pressure on these boundaries are assumed to be
continuous.

It should be noted that the intensity of hydrate formation in the equilibrium scheme used (both on the
frontal surfaces and in volume zones) is bounded by removal of latent heat of hydrate formation.

According to the modern concepts [6], formation of hydrate particles is accompanied by nonequilibrium
processes caused by diffusion of the hydrate-forming gas toward the water–hydrate contact surface through water
and hydrate layers. Assuming the characteristic thicknesses of such layers to be of the order of the pore channel
size

√
k/m, we can estimate the characteristic times tD of relaxation of diffusion nonequilibrium as tD � k/(mD),

where D is the diffusion coefficient. As compared with times of interest for the present problem, these characteristic
times are usually very small.
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From the equation of continuity for water (1.2), we obtain

ρl(Sl − Sl0) + (1 − G)ρhSh = 0 (1.8)

(Sl0 is the initial saturation by water). Thus, with allowance for Eq. (1.3), we have

Sl = Sl0 − (ρh/ρl)(1 − G)Sh, Sg = 1 − Sl0 − (1 − (ρh/ρl)(1 − G))Sh.

In the present axisymmetric problem on gas injection into a horizontal porous reservoir, we assume that this
reservoir is saturated by the gas and water whose pressures p0 and temperatures T0 in the initial state correspond
to the thermodynamic conditions of their existence in the free state (p0 � ps0) and are identical throughout the
reservoir at the initial time:

t = 0: T = T0, p = p0 (r � rw). (1.9)

Let the gas (the same as the initial gas) with a constant temperature Tw be injected with a permanent mass
flow rate Qg through a well opening the reservoir throughout its entire thickness. Owing to gas injection, a zone
saturated by the gas and hydrate is formed near the well. We assume that the influence of the well size on the
characteristics of the process is insignificant if the times of gas injection are rather large, when the size of this zone
is much greater than the well radius (r(s) � rw). Then, with allowance for the Darcy law and the equation of state
of the gas, the conditions on the well boundary have the form

r = rw: − kgπ

μgRgTw

(
r

∂p2

∂r

)
= Qg, T = Tw (rw → 0, t > 0). (1.10)

The problem formulated has a self-similar solution.
2. Solution with the Frontal Surface of Phase Transitions. In this case, two characteristic zones are

formed. In the zone near the well, water completely transforms to the gas-hydrate state; hence, the pores contain
only the gas and gas hydrate. In the second (far) zone, the pores of the reservoir are filled by the gas and water.
Hence, gas-hydrate formation occurs on the frontal surface between these zones only, and there is no intermediate
zone.

By introducing the self-similar variable

ξ = r/
√

α(T )t

[α(T ) = λ/(ρc) is the thermal diffusivity of the reservoir] and taking into account Eqs. (1.1)–(1.5), we can write the
equations of thermal diffusivity and piezoconductivity as

−1
2

ξ
dT(i)

dξ
=

1
2

Pe(i)

p2
0

dp2
(i)

dξ

dT(i)

dξ
+

1
ξ

d

dξ

(
ξ

dT(i)

dξ

)
,

−ξ
dp2

(i)

dξ
= 2η(i)

1
ξ

d

dξ

(
ξ

dp2
(i)

dξ

)
,

(2.1)

where

η(i) =
α

(p)
(i)

α(T )
, α

(p)
(i) =

k(i)p0

mSg(i)μg
, Pe(i) =

ρg0cg

λ

k(i)p0

μg
, k(i) = k0S

3
g(i);

the subscripts in brackets i = 1, 2 refer to the parameters of the first and second zones, respectively. Note that the
piezoconductivity equation is obtained by Leibenzon’s method of linearization [7].

On the interface between the near and far zones, there occurs a jump of the saturation by the hydrate from
S−

h = Sh(1) to S+
h = 0. The saturation by the hydrate in the first zone Sh(1) is determined from condition (1.8):

Sh(1) = ρlSl0/(ρh(1 − G)).

The pressure and temperature on the interface between these zones are related by the condition of phase equilibrium
(1.6).

Using Eqs. (1.7), we write the system of equations for determining the self-similar coordinate ξ(s) of the
phase-transition boundary and the values of parameters on this boundary as
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dT(1)

dξ
− dT(2)

dξ
=

ΔTSh(1)

2
ξ(s), k(2)

dp2
(2)

dξ
− k(1)

dp2
(1)

dξ
= KSh(1)ξ(s), (2.2)

where

ΔT = mρhLh/(ρc), K = mμgα
(T )p0(ρhG/ρg0 + ρh(1 − G)/ρl − 1).

By integrating Eqs. (2.1) and taking into account the initial and boundary conditions (1.9) and (1.10) for
pressure and temperature in each zone, we obtain

p2
(1) = p2

(s) +
QgμgRgTw

πk(1)

ξ(s)∫

ξ

1
ξ

exp
(
− ξ2

4η(1)

)
dξ,

T(1) = T(s) + (Tw − T(s))

ξ(s)∫

ξ

1
ξ

exp
(
− ξ2

4
− Pe(1)

2p2
0

p2
(1)

)
dξ

/ ξ(s)∫

0

1
ξ

exp
(
− ξ2

4
− Pe(1)

2p2
0

p2
(1)

)
dξ;

(2.3)

p2
(2) = p2

0 + (p2
(s) − p2

0)

∞∫

ξ

1
ξ

exp
(
− ξ2

4η(2)

)
dξ

/ ∞∫

ξ(s)

1
ξ

exp
(
− ξ2

4η(2)

)
dξ,

T(2) = T0 + (T(s) − T0)

∞∫

ξ

1
ξ

exp
(
− ξ2

4
− Pe(2)

2p2
0

p2
(2)

)
dξ

/ ∞∫

ξ(s)

1
ξ

exp
(
− ξ2

4
− Pe(2)

2p2
0

p2
(2)

)
dξ.

(2.4)

After substitution of solutions (2.3), (2.4) into the system of the boundary conditions (2.2), the latter acquires
the form

k(2)(p2
0 − p2

(s)) exp
(
−

ξ2
(s)

4η(2)

) / ∞∫

ξ(s)

1
ξ

exp
(
− ξ2

4η(2)

)
dξ +

QgμgRgTw

π
exp

(
−

ξ2
(s)

4η(1)

)
= KSh(1)ξ

2
(s); (2.5)

(T(s) − Tw) exp
(
−

ξ2
(s)

4
− Pe(1)

2p2
0

p2
(s)

) / ξ(s)∫

0

1
ξ

exp
(
− ξ2

4
− Pe(1)

2p2
0

p2
(1)

)
dξ

−(T0 − T(s)) exp
(
−

ξ2
(s)

4
− Pe(2)

2p2
0

p2
(s)

) / ∞∫

ξ(s)

1
ξ

exp
(
− ξ2

4
− Pe(2)

2p2
0

p2
(2)

)
dξ =

ΔT Sh(1)

2
ξ2
(s). (2.6)

System (2.5), (2.6) can be resolved as follows. Expressing the quantity p(s) explicitly from Eq. (2.5), sub-
stituting it into Eq. (2.6), and taking into account condition (1.6), we obtain a transcendental equation with one
unknown ξ(s). Solving the resultant equation (e.g., by the method of dichotomy), we find the value of ξ(s) and then
the pressure and temperature distributions in the first and second zones, including the values of these parameters
on the interface between the zones.

Figure 1a shows the temperature and pressure distributions for injection of the gas (methane) with a mass
flow rate Qg = 0.02 kg/(m · sec) and temperature Tw = 278 K into a reservoir with an initial pressure p0 = 4 MPa
and initial saturation by water Sl0 = 0.2. Curve 2 in Fig. 1a shows the distribution of the equilibrium temperature
corresponding to the pressure distribution obtained.

It is seen in Fig. 1a that the reservoir temperature ahead of the hydrate-formation front is lower than the
equilibrium temperature, and the reservoir temperature behind the front is higher than the equilibrium temperature,
which does not contradict physical principles. In this case, therefore, we can speak about the existence of a solution
with the frontal surface of hydrate formation.

Figure 1b shows the temperature and pressure distributions for injection of the gas with a mass flow rate
Qg = 0.1 kg/(m · sec) and temperature Tw = 278 K. It is seen that the reservoir temperature behind the front
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Fig. 1. Distributions of the reservoir temperature (1), equilibrium temperature (2), and pressure (3) for
Tw = 278 K, p0 = 4 MPa, Sl0 = 0.2, m = 0.1, G = 0.12, T0 = 280 K, T∗ = 10 K, ps0 = 5.5 MPa, k0 = 10−14 m2,
ρsk = 2 · 103 kg/m3, ρh = 900 kg/m3, ρl = 1000 kg/m3, Rg = 520 J/(K · kg), ρc = 2.5 · 106 J/(K ·m3),
λ = 2 W/(m ·K), μg = 10−5 kg/(m · sec), Lh = 5 · 105 J/kg, csk = 1000 J/(K · kg), ch = 900 J/(K · kg),
cl = 4200 J/(K · kg), cg = 1560 J/(K · kg), and different mass flow rates of the gas: Qg = 0.02 (a) and
0.1 kg/(m · sec) (b).

of hydrate formation is lower than the equilibrium temperature (curve 2 in Fig. 1b), i.e., water supercooling is
observed in this zone. Thus, for the mass flow rate used, the model of hydrate formation on the frontal surface does
not allow a physically noncontradictory solution to be constructed. To eliminate this contradiction, it is necessary
to introduce an extended zone of hydrate formation.

The volume zone of hydrate formation arises if the following condition is satisfied on the phase-transition
boundary (ξ = ξ(s)):

dT(2)

dξ
<

dT(2)s

dξ

[T(2)s is the temperature of hydrate formation corresponding to the pressure p(2)]. It follows from Eq. (1.6) that

dT(2)s

dξ
=

T∗
2p2

(s)

dp2
(2)

dξ
.

Using the boundary equations (2.2), we obtain the condition of the onset of an extended zone

dT(1)

dξ
− ΔTSh(1)

2
ξ(s) <

T∗
2k(2)p

2
(s)

(
k(1)

dp2
(1)

dξ
+ KSh(1)ξ(s)

)
,

which, with allowance for solutions (2.3), acquires the form
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Fig. 2. Critical mass flow rate of the gas Q∗ versus the permeability coefficient k0 for different values
of the initial saturation of the reservoir by water: Sl0 = 0.2 (1) and 0.4 (2).

(T(s) − Tw) exp
(
−

ξ2
(s)

4
− Pe(1)

2p2
0

p2
(s)

) / ξ(s)∫

0

1
ξ

exp
(
− ξ2

4
− Pe(1)

2p2
0

p2
(1)

)
dξ − ΔTSh(1)

2
ξ2
(s)

<
T∗

2k(2)p
2
(s)

(
− QgμgRgTw

π
exp

(
−

ξ2
(s)

4η(1)

)
+ KSh(1)ξ

2
(s)

)
. (2.7)

Numerical experiments were performed in wide ranges of parameters with the use of inequality (2.7) and
system (2.5), (2.6). The results of numerical calculations allow us to conclude that there is a critical mass flow rate
of the gas Q∗ for each value of permeability with the volume zone of hydrate formation appearing if this critical
value is exceeded. This dependence is plotted in Fig. 2 for two values of the initial saturation of the reservoir by
water.

3. Solution with a Volume Zone of Phase Transitions. If hydrate formation occurs in a volume zone,
there appear three typical zones in the reservoir: the near (first) zone where the pores are filled by the gas and
hydrate, the intermediate (second) zone where the gas, water, and hydrate are simultaneously present, and the far
(third) zone filled by the gas and water. Hydrate formation occurs in the intermediate zone. Correspondingly, two
surfaces appear: the surface between the far and intermediate zones, where the process of hydrate formation begins,
and the surface between the near and intermediate zones, where this process is finished.

For the near and far zones, the equations of thermal diffusivity and piezoconductivity in self-similar variables
can be presented in the form (2.1).

Using Eqs. (1.1)–(1.5) in the intermediate zone, we obtain

−ξ
dp2

(2)

dξ
= 2η(2)

1
ξ

d

dξ

(
ξ

dp2
(2)

dξ

)
+ 2Rhp2

(2)ξ
dSh(2)

dξ
; (3.1)

−ξ
dT(2)

dξ
=

Pe(2)

p2
0

dp2
(2)

dξ

dT(2)

dξ
+

2
ξ

d

dξ

(
ξ

dT(2)

dξ

)
− ΔT ξ

dSh(2)

dξ
. (3.2)

In Eqs. (3.1) and (3.2),

η(2) =
k(2)p0

μgmSg(2)α(T )
, Pe(2) =

ρg0cg

λ

k(2)p0

μg
, Rh =

ρhG

ρg0Sg(2)
.
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Hereinafter, the saturation by the gas and permeability in the second zone are assumed to be constant and equal
to their values in the third zone:

Sg(2) = Sg(3) = 1 − Sl0, k(2) = k(3) = k0(1 − Sl0)3.

In addition, the temperature and pressure in the intermediate zone are related by the phase equilibrium condition

T(2) = T0 + T∗ ln (p(2)/ps0). (3.3)

It follows from Eq. (3.3) that

dT(2)

dξ
=

T∗
2p2

(2)

dp2
(2)

dξ
. (3.4)

Substituting Eq. (3.4) into Eq. (3.2), we obtain

−ξ
dp2

(2)

dξ
=

Pe(2)

p2
0

(dp2
(2)

dξ

)2

+
2
ξ

d

dξ

(
ξ

dp2
(2)

dξ

)
− 2

ΔT

T∗
p2
(2)ξ

dSh(2)

dξ
. (3.5)

Expressing the derivative dSh(2)/dξ from Eq. (3.1) and substituting this derivative into Eq. (3.5), we obtain

−RhT∗ + ΔT

2RhT∗
ξ

dp2
(2)

dξ
=

Pe(2)

2p2
0

(dp2
(2)

dξ

)2

+
1
ξ

T∗Rh + ΔTη(2)

T∗Rh

d

dξ

(
ξ

dp2
(2)

dξ

)
. (3.6)

The second term in the right side of Eq. (3.6) can be presented in the form of two terms as

−RhT∗ + ΔT

2RhT∗
ξ

dp2
(2)

dξ
=

Pe(2)

2p2
0

(dp2
(2)

dξ

)2

+
T∗Rh + ΔTη(2)

T∗Rh

d

dξ

(dp2
(2)

dξ

)
+

T∗Rh + ΔTη(2)

T∗Rh

1
ξ

dp2
(2)

dξ
. (3.7)

We write the relation between the first and second terms in the right side of Eq. (3.7) in the form

χ =
Pe(2) Δp2

(2)T∗Rh

2p2
0(ΔTη(2) + T∗Rh)

,

where Δp2
(2) is the characteristic difference in pressure p2

(2) in the second zone.
As χ � 1 in most cases of practical importance, Eq. (3.6) can be presented as

− d

dξ

(
ξ

dp2
(2)

dξ

)
=

1
2η∗

ξ2
dp2

(2)

dξ
, (3.8)

where η∗ = (ΔTη(2) + RhT∗)/(ΔT + RhT∗). With allowance for Eq. (3.8), formula (3.1) yields the first-order
differential equation relating the saturation by the hydrate and the pressure in the second zone:

η(2) − η∗
η∗

ξ
dp2

(2)

dξ
= 2Rhp2

(2)ξ
dSh(2)

dξ
. (3.9)

On the surface r = r(s) separating the near and intermediate zones (on the first boundary), the saturation
by the hydrate increases in a jumplike manner from S−

h = Sh(1) to S+
h = Sh(s). Then, using relations (1.7) and

condition (3.3), we write the following system of equations for finding the coordinate of the first boundary ξ(s) and
the values of parameters on this boundary:

k(2)

dp2
(2)

dξ
− k(1)

dp2
(1)

dξ
= K(Sh(1) − Sh(s))ξ(s),

dT(1)

dξ
− dT(2)

dξ
=

ΔT

2
(Sh(1) − Sh(s))ξ(s),

dT(2)

dξ
=

T∗
2p2

(s)

dp2
(2)

dξ
.

(3.10)

On the surface r = r(m) separating the far and intermediate zones (on the second boundary), the saturation
by the hydrate Sh(m) is assumed to be continuous and equal to zero:

S−
h(m) = S+

h(m) = 0. (3.11)

Within the framework of the model considered, any jump in the saturation by the hydrate on the second
boundary results in formation of a zone in the third zone with the reservoir temperature lower than the hydrate
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formation temperature. Thus, condition (3.11) is the only possible solution for the saturation by the hydrate on
the second boundary, which ensures a thermodynamically noncontradictory solution in the third zone.

With allowance for relations (1.7) and condition (3.3), the system of equations for the coordinate of the
second boundary ξ(m) and the values of parameters on this boundary takes the form

dp2
(2)

dξ
=

dp2
(3)

dξ
,

dT(2)

dξ
=

dT(3)

dξ
,

dT(2)

dξ
=

T∗
2p2

(m)

dp2
(2)

dξ
. (3.12)

The distributions of pressure and temperature in the near zone are described by solutions that coincide with
solutions (2.3).

Integrating Eq. (3.8), we obtain the pressure distribution in the intermediate zone

p2
(2) = p2

(m) + (p2
(s) − p2

(m))

ξ(m)∫

ξ

1
ξ

exp
(
− ξ2

4η∗

)
dξ

/ ξ(m)∫

ξ(s)

1
ξ

exp
(
− ξ2

4η∗

)
dξ. (3.13)

The distribution of the temperature T2 in this zone corresponding to the pressure distribution (3.13) is related to
the latter by the phase equilibrium condition (3.3).

Integrating Eq. (3.9) and taking into account condition (3.11), we obtain the expression for the distribution
of the saturation by the hydrate in the intermediate zone

Sh(2) =
η(2) − η∗
2Rhη∗

ln
p2
(2)

p2
(m)

,

from which we find the saturation by the hydrate on the first boundary (on the side of the intermediate zone):

Sh(s) =
η(2) − η∗
2Rhη∗

ln
p2
(s)

p2
(m)

. (3.14)

For the far zone, we have

p2
(3) = p2

0 + (p2
(m) − p2

0)

∞∫

ξ

1
ξ

exp
(
− ξ2

4η(3)

)
dξ

/ ∞∫

ξ(m)

1
ξ

exp
(
− ξ2

4η(3)

)
dξ,

T(3) = T0 + (T(m) − T0)

∞∫

ξ

1
ξ

exp
(
− ξ2

4
− Pe(3)

2p2
0

p2
(3)

)
dξ

/ ∞∫

ξ(m)

1
ξ

exp
(
− ξ2

4
− Pe(3)

2p2
0

p2
(3)

)
dξ.

Substituting the solutions obtained for the pressure and temperature distributions in the first and second zones into
Eq. (3.10), we write the system of equations for the parameters on the first boundary in the following form:

k(2)(p2
(m) − p2

(s)) exp
(
−

ξ2
(s)

4η∗

)/ξ(m)∫

ξ(s)

1
ξ

exp
(
− ξ2

4η∗

)
dξ +

QgμgRgTw

π
exp

(
−

ξ2
(s)

4η(1)

)
= K(Sh(1) − Sh(s))ξ2

(s); (3.15)

(T(s) − Tw) exp
(
−

ξ2
(s)

4
− Pe(1)

2p2
0

p2
(s)

) / ξ(s)∫

0

1
ξ

exp
(
− ξ2

4
− Pe(1)

2p2
0

p2
(1)

)
dξ

− T∗
2p2

(s)

(p2
(m) − p2

(s)) exp
(
−

ξ2
(s)

4η∗

) / ξ(m)∫

ξ(s)

1
ξ

exp
(
− ξ2

4η∗

)
dξ =

ΔT

2
(Sh(1) − Sh(s))ξ2

(s). (3.16)

Similarly, substituting the solutions obtained for the pressure and temperature distributions in the second
and third zones into Eq. (3.12), we obtain the system of equations for the second boundary:
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(p2
(m) − p2

(s)) exp
(
−

ξ2
(m)

4η∗

)/ξ(m)∫

ξ(s)

1
ξ

exp
(
− ξ2

4η∗

)
dξ = (p2

0 − p2
(m)) exp

(
−

ξ2
(m)

4η(3)

)/ ∞∫

ξ(m)

1
ξ

exp
(
− ξ2

4η(3)

)
dξ; (3.17)

T∗
2p2

(m)

(p2
(m) − p2

(s)) exp
(
−

ξ2
(m)

4η∗

) / ξ(m)∫

ξ(s)

1
ξ

exp
(
− ξ2

4η∗

)
dξ

= (T0 − T(m)) exp
(
−

ξ2
(m)

4
− Pe(3)

2p2
0

p2
(m)

) / ∞∫

ξ(m)

1
ξ

exp
(
− ξ2

4
− Pe(3)

2p2
0

p2
(3)

)
dξ. (3.18)

The temperature and pressure on these boundaries are related by the phase equilibrium conditions

T(s) = T0 + T∗ ln (p(s)/ps0), T(m) = T0 + T∗ ln (p(m)/ps0).

The system of the boundary conditions (3.15)–(3.18) is solved by the following procedure. First we define the
zeroth approximation of the sought quantities on the first boundary (the values of the parameters on the hydrate
formation front calculated by the frontal model were taken as such an approximation). Then, expressing the value
of p(m) from Eq. (3.17) and substituting it into Eq. (3.18), we obtain a transcendental equation with one unknown
ξ(m). Solving this equation (e.g., by the method of dichotomy), we find the value of ξ(m) and then p(m). After that,
knowing the values of parameters on the second boundary, we find the value of p(s) from Eq. (3.15) and substitute
this value into Eq. (3.16). We obtain a transcendental equation with one unknown ξ(s); by solving this equation,
we determine a new approximate value of the coordinate of the first boundary ξ(s), and then a new approximate
value of the pressure p(s). After cyclic repetitions of this iterative procedure, we obtain a sequence of approximate
values converging to the sought values of the boundary parameters.

Figure 3 shows the distributions of temperature and saturation by the hydrate for a mass flow rate close
to the critical value Q∗ at which the frontal surface of hydrate formation transforms to a volume zone. It follows
from Fig. 3 that there appears an intermediate zone as the critical value of the mass flow rate is exceeded, and the
length of this intermediate zone increases with a further increase in the flow rate of the gas. It also follows from
Fig. 3 that the main part of water transforms to the gas hydrate on the frontal surface, and the temperature in the
zone of hydrate formation is only slightly higher than the initial temperature of the reservoir.

Figure 4 shows the distributions of pressure, temperature, and saturation by the hydrate for the case of
high-intensity injection of the gas. It is seen from Fig. 4 that the temperature in the hydrate formation zone is
substantially higher than the initial temperature of the reservoir if the gas is injected with high mass flow rates.
This is caused by the fact that the pressure in the intermediate zone is much higher than the equilibrium pressure
ps0 corresponding to the initial temperature T0. Hence, injection of a cold (Tw < T0) gas into the reservoir leads
to its heating, and the degree of heating increases with increasing mass flow rate of the injected gas. In addition,
it follows from Fig. 4 that an increase in the mass flow rate of the gas substantially increases the length of the
intermediate zone and the fraction of hydrates formed in this zone (as compared with the amount of hydrates formed
on the frontal surface separating the near and intermediate zones). Thus, as the mass flow rate of the gas increases,
the process of hydrate formation in the volume zone becomes more and more different from the above-considered
formation of hydrates on the frontal surface.

It was demonstrated in Sec. 2 that an extended zone of hydrate formation arises if inequality (2.7) is valid.
Let us consider the limit case

(T(s) − Tw) exp
(
−

ξ2
(s)

4
− Pe(1)

2p2
0

p2
(s)

) / ξ(s)∫

0

1
ξ

exp
(
− ξ2

4
− Pe(1)

2p2
0

p2
(1)

)
dξ − ΔT Sh(1)

2
ξ2
(s)

=
T∗

2k(2)p
2
(s)

(
− QgμgRgTw

π
exp

(
−

ξ2
(s)

4η(1)

)
+ KSh(1)ξ

2
(s)

)
. (3.19)
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Fig. 3. Distributions of temperature T and saturation by the hydrate Sh for Tw = 276 K, Sl0 = 0.2,
and different values of the mass flow rate of the gas (the remaining parameters are identical to those
in Fig. 1): Qg = 0.035 (1), 0.04 (2), and 0.045 kg/(m · sec) (3).

Fig. 4. Distributions of pressure p, temperature T , and saturation by the hydrate Sh for Sl0 = 0.3
and different values of the mass flow rate of the gas: Qg = 0.1 (1) and 0.2 kg/(m · sec) (2).
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If condition (3.19) is satisfied, the volume zone of hydrate formation transforms to the frontal surface. Indeed,
the system of equations for the first boundary (3.10) implies that

(T(s) − Tw) exp
(
−

ξ2
(s)

4
− Pe(1)

2p2
0

p2
(s)

) / ξ(s)∫

0

1
ξ

exp
(
− ξ2

4
− Pe(1)

2p2
0

p2
(1)

)
dξ − ΔT (Sh(1) − Sh(s))

2
ξ2
(s)

=
T∗

2k(2)p
2
(s)

(
− QgμgRgTw

π
exp

(
−

ξ2
(s)

4η(1)

)
+ K(Sh(1) − Sh(s))ξ2

(s)

)
. (3.20)

Substituting relation (3.19) into Eq. (3.20), we obtain

ΔT

2
Sh(s)ξ(s) = − T∗

2k(2)p
2
(s)

KSh(s)ξ(s).

The only nontrivial (ξ(s) �= 0) solution of this equation is the solution

Sh(s) = 0.

Then, from Eq. (3.14) with allowance for Eq. (3.3), we obtain

T(s) = T(m), p(s) = p(m),

and Eq. (3.17) yields

ξ(s) = ξ(m).

Thus, if condition (3.19) is satisfied, the extended zone degenerates into the frontal surface, which allow us
to consider the solution with the frontal boundary of phase transitions obtained in Sec. 2 as the limit case of the
problem with hydrate formation in the volume zone.

This work was supported by the Council on the Grants of the President of the Russian Federation for
Supporting the Leading Scientific Schools (Grant No. NSh-7055.2006.1).

REFERENCES

1. V. A. Istomin and V. S. Yakushev, Gas Hydrates in Nature [in Russian], Nedra, Moscow (1992).
2. S. Sh. Byk, Yu. F. Makogon, and V. I. Fomina, Gas Hydrates [in Russian], Khimiya, Moscow (1980).
3. R. I. Nigmatulin, V. Sh. Shagapov, and V. R. Syrtlanov, “Self-similar problem of decomposition of gas hydrates

in a porous medium upon depression and heating,” J. Appl. Mech. Tech. Phys., 39, No. 3, 421–427 (1998).
4. A. M. Maksimov and G. G. Tsypkin, “Decomposition of gas hydrates co-existing with the gas in reservoirs,” Izv.

Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 84–88 (1990).
5. V. I. Vasil’ev, V. V. Popov, and G. G. Tsypkin, “Numerical study of decomposition of gas hydrates co-existing

with the gas in natural reservoirs,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 127–134 (2006).
6. N. A. Gumerov, “Self-similar growth of the gas hydrate separating the gas and the liquid,” Izv. Ross. Akad.

Nauk, Mekh. Zhidk. Gaza, No. 5, 78–85 (1992).
7. L. S. Leibenzon, Motion of Natural Liquids and Gases in a Porous Medium [in Russian], OGIZ, Moscow (1947).

472



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
    /RUS ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


